
CARP:
Visuomotor Policy Learning via Coarse-to-Fine Autoregressive Prediction

Zhefei Gong1, Pengxiang Ding12*, Shangke Lyu1, Siteng Huang12, Mingyang Sun12, Wei Zhao1,
Zhaoxin Fan3, Donglin Wang1†

1Westlake University 2Zhejiang University
3Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing

Project Webpage

Abstract

In robotic visuomotor policy learning, diffusion-based
models have achieved significant success in improving the
accuracy of action trajectory generation compared to tra-
ditional autoregressive models. However, they suffer from
inefficiency due to multiple denoising steps and limited flex-
ibility from complex constraints. In this paper, we introduce
Coarse-to-Fine AutoRegressive Policy (CARP), a novel
paradigm for visuomotor policy learning that redefines the
autoregressive action generation process as a coarse-to-
fine, next-scale approach. CARP decouples action gener-
ation into two stages: first, an action autoencoder learns
multi-scale representations of the entire action sequence;
then, a GPT-style transformer refines the sequence predic-
tion through a coarse-to-fine autoregressive process. This
straightforward and intuitive approach produces highly ac-
curate and smooth actions, matching or even surpassing
the performance of diffusion-based policies while main-
taining efficiency on par with autoregressive policies. We
conduct extensive evaluations across diverse settings, in-
cluding single-task and multi-task scenarios on state-based
and image-based simulation benchmarks, as well as real-
world tasks. CARP achieves competitive success rates, with
up to a 10% improvement, and delivers 10× faster infer-
ence compared to state-of-the-art policies, establishing a
high-performance, efficient, and flexible paradigm for ac-
tion generation in robotic tasks.

1. Introduction

Policy learning from demonstrations, formulated as the su-
pervised regression task of mapping observations to actions,
has proven highly effective across various robotic tasks,

* Project lead.
† Corresponding author.

Su
cc

es
sR

at
e 

(%
)

In
fe

re
nc

e
Sp

ee
d

(H
z)

Behavior Transformer Diffusion Policy CARP (Ours)

Autoregressive Policy Diffusion Policy

High
Efficiency

High
Performance

Low 
Performance

Low
Efficiency

😊😭 😭

CARP

54.4

98.3

94.2172.8

9.6

130.4

Figure 1. Policy Comparison. The representative performance
among Behavior Transformer [52] served as an autoregressive pol-
icy, Diffusion Policy [11], and our approach in the state-based
Robomimic square task experiment. CARP achieves a superior
balance of performance and efficiency.

even in its simplest form. Replacing the policies with gen-
erative models, particularly those stemming from the vision
community, has opened new avenues for improving perfor-
mance, enabling robots to achieve the high precision re-
quired for complex tasks.

Existing approaches have explored different generative
modeling techniques to address challenges in visuomotor
policy learning. Autoregressive Modeling (AM) [12, 30, 52,
70] provides a straightforward and efficient out-of-the-box
solution, benefitting from its scalability, flexibility, and ma-
ture exploration at lower computation requirements. How-
ever, AM’s next-token prediction paradigm often fails to

1

https://carp-robot.github.io


𝑎"!𝑎"" 𝑎"# 𝑎"$

AP

𝑠%# 𝑠%" 𝑠& 𝑠"
(a) Autoregressive Policy

DP

𝒔

𝑎!"#!𝑎$"#!𝑎%"#!𝑎&"#!

𝑎!" 𝑎$" 𝑎%" 𝑎&"

𝑎"! 𝑎"$ 𝑎"% 𝑎"&
…

…

(b) Diffusion Policy

𝒔

𝑎"! 𝑎"" 𝑎"# 𝑎"$
…

𝑎!% 𝑎"% 𝑎#% 𝑎$% 𝑎!%&!𝑎"%&!𝑎#%&!𝑎$%&!

𝑎!% 𝑎"% 𝑎#% 𝑎$% 𝑎!%&!𝑎"%&!𝑎#%&!𝑎$%&!

CARP

…

(c) CARP (Ours)

Figure 2. Structure of Current Policies. â is the predicted action, ak denotes the refining action at step k, s is the historical condition.
a) Autoregressive Policy predicts the action step-by-step in the next-token paradigm. b) Diffusion Policy models the noise process used to
refine the action sequence. c) CARP refines action sequence predictions autoregressively from coarse to fine granularity.

capture long-range dependencies, global structure, and tem-
poral coherence [26], leading to poor performance, which is
essential for many robotic tasks. Recently, Diffusion Mod-
eling (DM) [11, 51, 61] has emerged as a promising alter-
native, bridging the precision gap in AM by modeling the
gradient of the action score function to learn multimodal
distributions. Nevertheless, DM requires multiple steps of
sequential denoising, making it computationally prohibitive
for robotic tasks, especially for robotic tasks requiring effi-
cient real-time inference in on-board compute-constrained
environments. Additionally, DDPM [19]’s rigid generative
process lacks flexibility and adaptability for tasks with long-
term dependencies, often leading to cumulative errors and
reduced robustness over extended time spans.

Both AM and DM have their respective advantages and
limitations, which are often orthogonal and difficult to bal-
ance in practical applications. In this work, we aim to
resolve this trade-off by introducing a novel generative
paradigm for robot visuomotor policy learning that predicts
entire action sequences from a coarse-to-fine granularity in
a next-scale prediction framework. This approach allows
our model to achieve performance levels comparable to DM
while achieving AM’s efficiency and flexibility.

Our primary contribution is the introduction of a Coarse-
to-Fine AutoRegressive Policy (CARP), a hybrid frame-
work that combines AM’s efficiency with DM’s high per-
formance to meet the demands of real-world robotic manip-
ulation. Specifically, our contributions are as follows:
• Multi-scale action tokenization: We propose a multi-

scale tokenization method for action sequences that cap-
tures the global structure and maintains temporal locality,
effectively addressing AM’s myopic limitations.

• Coarse-to-fine autoregressive prediction: This mech-
anism refines action sequences in the latent space using
Cross-Entropy loss with relaxed Markovian assumptions
during iterations, achieving DM-like performance with
high efficiency.

• Comprehensive sim & real experiments: Extensive ex-
periments demonstrate CARP’s effectiveness in both sim-
ulated and real-world robotic manipulation tasks.

In summary, we present CARP, a novel visuomotor policy
framework that synergizes the strengths of AM and DM,
offering high performance, efficiency, and flexibility.

2. Background
We start by introducing the background, focusing on three
key areas: problem formulation, conventional autoregres-
sive policies, and diffusion-based policies.

2.1. Problem Formulation
Problem formulation will consider a task T , where there
are N expert demonstrations {τi}Ni=1. Each demonstration
τi is a sequence of state-action pairs. We formulate robot
imitation learning as an action sequence prediction problem
[11, 46, 61], training a model to minimize the error in fu-
ture actions conditioned on historical states. Specifically,
imitation learning minimize the behavior cloning loss Lbc

formulated as

Lbc = Es,a∼T

[
T∑

t=0

L (πθ(aH |sO),aH)

]
, (1)

where a represents the action, s denotes the state or ob-
servation according to the specific task description, t is the
current time step, H is the prediction horizon, and O is the
historical horizon. For notational simplicity, we denote the
action sequence at:t+H−1 as aH and the state sequence
st−O+1:t as sO. Here, Lbc represents a supervised action
prediction loss, such as mean squared error or negative log-
likelihood, T is the length of the demonstration, and θ rep-
resents the learnable parameters of the policy network πθ.

2.2. Autoregressive Policy
Autoregressive policies leverage the efficiency and flexibil-
ity of autoregressive models (GPT-style Decoders). Recent
advancements, such as action chunking [52, 70], redefine
this paradigm as a multi-token, one-pass prediction method
(see Appendix B for further details). We refer to this ap-
proach as Autoregressive Policy (AP). In this approach, the

2



𝒓!
𝒓"

𝒓#Encoding

Multi-S
cale

Decoding

Temporal
Encoder

…time
step

…𝑞!
𝑞!

𝑞"

𝑞!

𝑞"

𝑞#$!

𝑞#

Codebook 
123…V V-1

Temporal
Decoder

Actions

(a) Multi-Scale Action Tokenization

Transformer

𝒓"!

Token EmbeddingObs
Encoder

View/Proprio. State

Cross-Entropy

𝑙! + 𝑙" + 𝑙# + 𝑙$ = 10

Scale-Wise 
Casual Mask

𝑞"!

𝑞!

𝒓""

𝒓! 𝒓"

𝒓"#

𝒓#

𝒓"$

𝒓$

𝒆" 𝒆# 𝒆$

𝑞"! 𝑞"" 𝑞"! 𝑞"" 𝑞"# 𝑞"! 𝑞"" … 𝑞"$%! 𝑞"$

𝑞! 𝑞" 𝑞! 𝑞" 𝑞# 𝑞! 𝑞" 𝑞$%! 𝑞&…

𝒔

𝑞!

𝒓! 𝒓" 𝒓$%!
𝑞! 𝑞" 𝑞! 𝑞" 𝑞$%!…

…

…

…

…

…

(b) Coarse-to-Fine Autoregressive Prediction

Figure 3. Overview of the Two Stages of CARP. a) A multi-scale action autoencoder extracts token maps r1, r2, . . . , rK to represent the
action sequence at different scales, trained using the standard VQVAE loss. b) The autoregressive prediction is reformulated as a coarse-
to-fine, next-scale paradigm. The sequence is progressively refined from coarse token map r1 to finer granularity token map rK , where
each rk contains lk tokens. An attention mask ensures that each rk attends only to the preceding r1:k−1 during training. A standard Cross-
Entropy loss is used for training. During inference, the token maps r1:K are collectively decoded into continuous actions for execution.

next-token posits the probability of observing the current
action at depends solely on its previous states sO, which
allows for the factorization of the likelihood of sequence
with length H as:

p (at,at+1, ...,at+H−1) =

t+H−1∏
k=t

p (ak|sO) . (2)

However, it introduces several issues that hinder its perfor-
mance. The linear, step-by-step unidirectional dependency
of action prediction may overlook the global structure [26],
making it challenging to capture long-range dependencies
and holistic coherence or temporal locality [22] in complex
scenes or sequences, which restricts their generalizability in
tasks requiring bidirectional reasoning, as shown in Fig. 2a.
For example, it cannot predict the former actions given the
near-terminal state.

2.3. Diffusion Policy
Diffusion-based policies [11] utilize Denoising Diffusion
Probabilistic Models [19] to approximate the conditional
distribution p(aH |sO), through modeling the noise during
the denoising process from Gaussian noise to noise-free
output as

ak+1
H = α(ak

H − γϵθ(sO,a
k
H , k) +N ), (3)

where ϵθ is the learnable noise network, k is the current
denosing step, N is the Gaussian noise, α and γ are the
hyper-parameters.

Diffusion-based policies show impressive performance
in robotic manipulation tasks due to their action genera-
tion which gradually refines from random samples which
we can abstract as a coarse-to-fine process. This kind of

process alike human movement or natural thinking flows in
line with human intuition. However, they suffer from poor
convergence due to their design. To address this, multiple
denoising steps are required, constrained by the Markovian
assumption, where ak+1

H depends only on the previous step
ak
H (as shown in Fig. 2b), which leads to significant runtime

inefficiency. Moreover, they lack the ability to leverage gen-
eration context effectively, hindering scalability to complex
scenes [16].

3. Method
To address the limitations of existing methods, we propose
Coarse-to-Fine AutoRegressive Policy (CARP), a novel vi-
suomotor policy framework that combines the high perfor-
mance of recent diffusion-based policies with the sample
efficiency and flexibility of traditional autoregressive poli-
cies.

CARP achieves these advantages through a redesigned
autoregressive modeling strategy. Specifically, we shift
from conventional next-token prediction to a coarse-to-fine,
next-scale prediction approach, using multi-scale action
representations. CARP’s training is divided into two stages:
multi-scale action tokenization and coarse-to-fine autore-
gressive prediction, as shown in Fig. 3.

In this section, we first explain the construction of multi-
scale action token maps, followed by the coarse-to-fine au-
toregressive prediction approach for action generation. Key
implementation details are provided at the end.

3.1. Multi-Scale Action Tokenization
Instead of focusing on individual action steps, we extract
representations at multiple scales across the entire action
sequence. We propose a novel multi-scale action quantiza-

3



tion autoencoder that encodes a sequence of actions into K
discrete token maps, R = (r1, r2, . . . , rK), which are used
for both training and inference. Our approach builds on the
VQVAE architecture [60], incorporating a modified multi-
scale quantization layer [58] to enable hierarchical encod-
ing.

Encoder and Decoder. As illustrated in Fig. 3a, the ac-
tions are first organized into an action sequence AH×D,
where H denotes the prediction horizon and D represents
the dimensionality of the action a. Given that each di-
mension in the action space is orthogonal to the others,
and that there exists a natural temporal dependency within
an action sequence, we employ a 1D temporal convolu-
tional network (1D-CNN) along the time dimension, as
used in [22], for both the encoder E(·) and decoder D(·).
Let F = E(A) ∈ RL×C , where L denotes the compressed
length of the temporal dimension with L ≤ H , and C rep-
resents the dimensionality of the feature map F .

Quantization. We introduce a quantizer with a learnable
codebook Z ∈ RV×C , containing V code vectors, each of
dimension C. The quantization process (lines 4-11 in Algo-
rithm 1) generates the action sequence representation itera-
tively across multiple scales. At scale k, it produces action
token map rk to represent the sequence, which consists of
lk tokens q. In our implementation, we set lk = k. The
function Lookup(Z, v) retrieves the v-th code vector from
Z . The quantization function is defined by r = Q(F ) as
following:

q = argmin
v∈[V ]

dist (Lookup(Z, v),f) ∈ [V ], (4)

where token q represents the nearest vector in Z for a given
feature vector f ∈ R1×C in the feature map F , based on a
distance function dist(·).

Specifically, we adopt a residual-style design [29, 58]
for feature maps F and F̂ , as shown in lines 4-11 of Al-
gorithm 1. This design ensures that each finer-scale rep-
resentation rk depends only on its coarser-scale predeces-
sors (r1, r2, . . . , rk−1), facilitating a multi-scale represen-
tation. A shared codebook Z is used across all scales, en-
suring that multi-scale token maps R = (r1, r2, . . . , rK),
where K is the number of scales, are drawn from a con-
sistent vocabulary [V ]. To preserve information during up-
sampling, we employ K additional 1D convolutional layers
{ϕk}Kk=1 [58], as illustrated in lines 9-10 of Algorithm 1.

Loss. The final approximation F̂ of the original fea-
ture map F is combined residually with the multi-scale rep-
resentation derived from the codebook Z , based on each
r. The reconstructed action sequence is then obtained as
Â = D(F̂ ). To train the quantized autoencoder, a typical
VQVAE loss L is minimized as following

L = ∥A− Â∥2︸ ︷︷ ︸
Lrecon

+ ∥sg(F )− F̂ ∥2︸ ︷︷ ︸
Lquant

+ ∥F − sg(F̂ )∥2︸ ︷︷ ︸
Lcommit

, (5)

where Lrecon minimizes the difference between the original
action sequence A and the reconstruction Â. sg(·) denotes
stop-gradient. Lquant aligns the quantized feature map F̂
with the original F , and Lcommit encourages the encoder to
commit to codebook entries, preventing codebook collapse.
For Lquant and Lcommit, we calculate every residual calcu-
lating moment of each scale rk as in Algorithm 1. After
training, the autoencoder {E ,Q,D} tokenizes actions for
subsequent coarse-to-fine autoregressive modeling.

Discussion. The tokenization strategy described above
allows the multi-scale tokens R, extracted from the action
sequence A ∈ RH×D via temporal 1D convolutions, to
inherently preserve temporal locality [22]. Additionally,
the hierarchical extraction captures the global structure, en-
abling the model to treat the action sequence as a unified
entity.

Unlike traditional autoregressive policies that predict
each action token independently (see Eq. (2) and Fig. 2a),
CARP leverages dual capabilities to capture both local tem-
poral dependencies and global structure across the entire ac-
tion sequence. This approach produces smoother transitions
and more stable action sequences. Through multi-scale en-
coding, CARP overcomes the short-sighted limitations of
conventional autoregressive models, yielding more robust,
coherent, and precise behaviors over extended time hori-
zons.

Algorithm 1 Multi-Scale Action VQVAE

1: Inputs: Action sequence A
2: Hyperparameters: Number of scales K, length of each scale

(lk)
K
k=1 , length of feature map’s temporal dimension L

3: Initialize: F ← E(A), F̂ ← 0, R← []
4: for k = 1 to K do
5: rk ← Q(Interpolate(F , lk))
6: R← R ∪ {rk}
7: Zk ← Lookup(Z, rk)
8: Zk ← Interpolate(Zk, L)
9: F ← F − ϕk(Zk)

10: F̂ ← F̂ + ϕk(Zk)
11: end for
12: Â← D(F̂ )
13: Return: Multi-scale token maps R, reconstructed action se-

quence Â

3.2. Coarse-to-Fine Autoregressive Prediction

Using multi-scale action sequence representations, we shift
from traditional next-token prediction to a next-scale predic-
tion approach, progressing from coarse to fine granularity.

Prediction. As we receive the multi-scale representation
tokens (r1, r2, . . . , rK), each r represents the same action
sequence in different scales. The autoregressive likelihood

4



can be formulated as

p(r1, r2, . . . , rK) =

K∏
k=1

p(rk | r1, r2, . . . , rk−1; sO),

(6)
where each autoregressive unit rk ∈ [V ]lk is the token
map at scale k containing lk tokens q. The predix sequence
(r1, r2, . . . , rk−1) is served as the condition for rk, accom-
panying with the historical state sequence sO. This kind
of next-scale prediction methodology is what we define as
coarse-to-fine autoregressive prediction.

Due to the residual-style quantization, during autoregres-
sive prediction, we first embed the previous scale token map
rk−1 and then reconstruct the next scale feature map ek, as
shown in Fig. 3b. This feature map ek is then used as in-
put for predicting the next scale token map rk. The token
maps r1:K are decoded by the multi-scale autoencoder into
continuous actions, following the residual-style process.

Loss. During the k-th autoregressive step, all distribu-
tions over the lk tokens in rk will be generated in parallel,
with the coarse-to-fine dependency ensured by a block-wise
causal attention mask [58]. To optimize the autoregressive
model, we utilize the standard Cross-Entropy loss to cap-
ture the difference between the predicted token map r̂ and
the token map r from the ground truth action sequence:

LCross-Entropy =

K∑
k=1

lk∑
i=1

[
−

V∑
v=1

ri,vk log r̂i,vk

]
, (7)

where lk is the length of each scale, V is the action vocabu-
lary size, and K is the number of scales.

Discussion. CARP models the entire trajectory holisti-
cally, progressively refining actions from high-level inten-
tions to fine-grained details (see Fig. 2c). This approach
aligns more closely with natural human behavior, where
movement is guided by overarching intentions rather than
step-by-step planning.

Instead of the commonly used MSE loss [5, 59, 70],
CARP employs Cross-Entropy loss (Eq. (7)) in behavior
cloning, as MSE tends to enforce a unimodal distribution
that can be detrimental to manipulation tasks [52]. CARP’s
iterative refinement process resembles the denoising steps
in diffusion models to achieve high accuracy.

Furthermore, our approach models actions directly rather
than modeling noise, enabling faster convergence in low-
dimensional manifolds [36, 64]. By operating in the latent
space with action sequence tokens, CARP mitigates trajec-
tory anomalies that can disrupt prediction, unlike methods
that work on raw actions [11]. This latent-space repre-
sentation allows CARP to focus on the essential compo-
nents of actions, resulting in smoother and more efficient
predictions. In contrast, traditional diffusion models rely
on Markovian processes, which compress all information

into progressively noisier inputs from previous levels, of-
ten hindering efficient learning and requiring more infer-
ence steps [16] (see Eq. (3) and Fig. 2b). CARP relaxes this
constraint by allowing each scale rk to depend on all prior
scales r1:k−1 instead of the only previous scale rk−1. This
structure enables CARP to generate high-quality trajecto-
ries with significantly fewer steps.

3.3. Implementation Details
Our primary focus is on the CARP algorithm, and we adopt
a simple model architecture design.

Tokenization. Due to the disentangling of the action
prediction, imprecise coarse-to-fine actions representation
can decrease the upper limit of model performance. Con-
sidering the discontinuity of the most representation for ro-
tation space like Euler angle or quaternion will increase the
unstable training process, we utilize rotation6d [71] to get
stable multi-scale tokens. And for the distance function
dist(·), we use cosine similarity rather than Euclidean dis-
tance which is the cause of unstable training based on our
observations. In practice, due to the orthogonality between
dimensions, we use a separate VQVAE [58] for each di-
mension of the action space, to gain stable training. All
convolutions we used in CARP are 1D to capture the time-
dimension features.

Autoregressive. We adopt the architecture of standard
decoder-only transformers akin to GPT-2 [9, 58]. The state
sO is used to generate the initial coarse-scale token map and
then is utilized as adaptive normalization [40] for the sub-
sequent predictions. During training, we observe that in-
corporating Exponential Moving Average (EMA) [18] en-
hances both training stability and performance, yielding a
4-5% improvement, consistent with findings in [11]. Dur-
ing the inference, kv-caching can be used and no mask is
needed, as shown in Fig. 10.

4. Experiment
In this section, we evaluate CARP on diverse robotics
tasks, including state-based and image-based benchmarks
in single-task and multi-task settings. CARP’s perfor-
mance is assessed based on task success rates, inference
speed, and model parameter scale. Additionally, we vali-
date CARP’s practical effectiveness by deploying it on real-
world tasks using a UR5e robotic arm, comparing its per-
formance against state-of-the-art diffusion-based policies.

Our experiments are structured to address the following
key research questions:
• RQ1: Can CARP match the accuracy and robustness of

current state-of-the-art diffusion-based policies?
• RQ2: Does CARP maintain high inference efficiency and

achieve fast convergence?
• RQ3: Does CARP leverage the flexibility benefits of a

GPT-style architecture?

5



Figure 4. Single-Task Simulation Setup. We evaluate three
tasks from the Robomimic [38] benchmark—Lift, Can, and
Square—ordered by increasing difficulty, along with a Kitchen
task [17] on the far left.

4.1. Evaluation on Simulation Benchmark
We first evaluate CARP on a set of simulated tasks com-
monly used to benchmark diffusion-based models, assess-
ing its ability to match their performance while significantly
improving computational efficiency.

Policy Lift Can Square Params/M Speed/s

BET [52] 0.96 0.88 0.54 0.27 2.12
DP-C [11] 1.00 0.94 0.94 65.88 35.21
DP-T [11] 1.00 1.00 0.88 8.97 37.83
CARP (Ours) 1.00 1.00 0.98 0.65 3.07

Table 1. State-Based Simulation Results (State Policy). We re-
port the average success rate of the top 3 checkpoints, along with
model parameter scales and inference time for generating 400 ac-
tions. CARP significantly outperforms BET and achieves com-
petitive performance with state-of-the-art diffusion models, while
also surpassing DP in terms of model size and inference speed.

Policy Lift Can Square Params/M Speed/s

IBC [15] 0.72 0.02 0.00 3.44 32.35
DP-C [11] 1.00 0.97 0.92 255.61 47.37
DP-T [11] 1.00 0.98 0.86 9.01 45.12
CARP (Ours) 1.00 0.98 0.88 7.58 4.83

Table 2. Image-Based Simulation Results (Visual Policy). Re-
sults show that CARP consistently balances high performance and
high efficiency. We highlight our results in light-blue.

Experimental Setup. We use the Robomimic [38]
benchmark suite, which is widely adopted for evaluating
diffusion-based models [11, 42, 61]. We evaluate CARP
on both state-based and image-based datasets collected
from expert demonstrations, with each task containing 200
demonstrations. The selected tasks are standard in single-
task evaluations, as shown in Fig. 4 and Fig. 12. For eval-
uating the ability to learn multiple long-horizon tasks, we
utilize the Franka Kitchen environment [17] which contains
7 objects for interaction and comes with a human demon-
stration dataset of 566 demonstrations, each completing 4
tasks in arbitrary order (see Fig. 14 for details).

Baselines. We compare CARP with previous au-
toregressive policies as well as recent diffusion policies.
Behavior Transformer (BET) [52] is an autoregressive
policy with action discretization and correction mecha-
nisms, similar to offset-based prediction. Implicit Behav-
ior Cloning (IBC) [15] utilizes energy-based models for
supervised robotic behavior learning. Diffusion Policy
(DP) [11] combines a denoising process with action pre-
diction, implemented in two variants: CNN-based (DP-C)
and Transformer-based (DP-T).

Policy p1 p2 p3 p4 Params Speed

BET [52] 0.96 0.84 0.6 0.20 0.30 1.95
DP-C [11] 1.00 1.00 1.00 0.96 66.94 56.14
DP-T [11] 1.00 0.99 0.98 0.96 80.42 56.32
CARP (Ours) 1.00 1.00 0.98 0.98 3.88 2.01

Table 3. Multi-Stage Task Results (State Policy). In the Kitchen,
px represents the frequency of interactions with x or more objects.
CARP outperforms BET, especially on challenging metrics like
p4, and achieves competitive performance compared to DP, with
fewer parameters and faster inference speed.

Metrics. For each task, we evaluate the policies by run-
ning 50 trials with random initializations to compute the
success rate and report the average success rate across the
top 3 checkpoints. For the Kitchen task, success rates are
reported with increasing difficulty, determined by the num-
ber of interactive objects (from p1 to p4). Inference speed is
measured on an A100 GPU by averaging the time required
for 400 action predictions (280 for the Kitchen task) over
5 runs to ensure robustness. We also record the parameter
count for each model using the same PyTorch implementa-
tion interface.

Implementation Details. For baseline models, we fol-
low the same implementation and training configurations
provided by [11]. In state-based experiments, we set the ob-
servation horizon O = 2 and the prediction horizon H = 16
across all models. For image-based experiments, we set
O = 1 and H = 16 for better transferability to real-world
scenarios. As per the benchmark, only the first 8 actions in
the prediction horizon are executed starting from the cur-
rent step (see Appendix C). For CARP, we first train an
action VQVAE model (see Sec. 3.1) following [29], using
V = 512, C = 8, a batch size of 256, and 300 epochs per
task Given a horizon H = 16, we design multi-scale repre-
sentations with scales of 1, 2, 3 and 4 to capture coarse-to-
fine information across the action sequence. We then train
an autoregressive GPT-2 style, decoder-only transformer
(see Sec. 3.2), based on [58], using the same training set-
tings as the benchmark, with a batch size of 256 for state-
based experiments (4000 epochs) and a batch size of 64 for
image-based experiments (3000 epochs).

Results. As demonstrated in Tables 1, 2, and 3, CARP

6



CARP (Ours)
Diffusion Policy

(a) Task Can (b) Task Square

Figure 5. Visualization of the Trajectory and Refining Process. The left panel shows the final predicted trajectories for each task,
with CARP producing smoother and more consistent paths than Diffusion Policy (DP). The right panel visualizes intermediate trajectories
during the refinement process for CARP (top-right) and DP (bottom-right). DP displays considerable redundancy, resulting in slower
processing and unstable training, as illustrated by 6 selected steps among 100 denoising steps. In contrast, CARP achieves efficient
trajectory refinement across all 4 scales, with each step contributing meaningful updates.

consistently achieves comparable performance to state-of-
the-art diffusion models across both state-based and image-
based tasks, answering RQ1. Notably, CARP significantly
outperforms diffusion policies in terms of inference speed,
being approximately 10 times faster, with only 1-5% of the
parameters required by diffusion models, thereby strongly
supporting RQ2 regarding CARP’s efficiency.

Analysis. To further examine CARP’s stability and ef-
ficiency, we visualize spatial trajectories along the xyz
axes for the Can and Square tasks in Fig. 5. In each
task’s left panel, CARP consistently reaches specific re-
gions (light grey area) to perform task-related actions, such
as positioning for object grasping or placement. Com-
pared to diffusion-based models, CARP’s trajectories are
smoother and more consistent, underscoring its stability and
accuracy (supporting RQ1). The right panels of Fig. 5
compare CARP’s coarse-to-fine action predictions with 6
selected denoising steps of the diffusion model. CARP
achieves accurate predictions within just 4 coarse-to-fine
steps, whereas the diffusion model requires numerous de-
noising iterations, with many early steps introducing redun-
dant computations. This analysis further supports RQ2 and
highlights CARP’s efficiency and fast convergence advan-
tage over diffusion policies in generating accurate actions
with fewer refinement steps, as detailed in Sec. 3.2.

4.2. Evaluation on Multi-Task Benchmark

We evaluate CARP on the MimicGen [39] multi-task simu-
lation benchmark, widely used by the state-of-the-art Sparse
Diffusion Policy (SDP) [61], to demonstrate CARP’s flexi-
bility, a result of its GPT-style autoregressive design.

Figure 6. Multi-Task Simulation Setup. We evaluate eight tasks
from the MimicGen [39] benchmark: Coffee, Hammer Cleanup,
Mug Cleanup, Nut Assembly, Square, Stack, Stack Three, and
Threading, listed left-to-right and top-to-bottom.

Experimental Setup. MimicGen extends benchmark
Robomimic [38] by including 1K–10K human demonstra-
tions per task, with diverse initial state distributions for en-
hanced generalization in multi-task evaluation. It consists
of 12 robosuite [72] tasks powered by MuJoCo and 4 high-
precision tasks from Isaac Gym Factory. We select 8 ro-
bosuite tasks—Coffee, Hammer, Mug, Nut, Square, Stack,
Stack Three, and Threading—for evaluation, each with 1K
training trajectories, following the settings in SDP [61]. Vi-
sualization is shown in Fig. 6 and Fig. 13.

Baselines. We compare CARP with two baselines:
Task-Conditioned Diffusion (TCD) [2, 34]: A basic
diffusion-based multi-task policy and Sparse Diffusion Pol-
icy (SDP) [61]: A transformer-based diffusion policy that
leverages Mixture of Experts (MoE) [53]. Both baselines

7



Policy Prams/M Speed/s Coffee Hammer Mug Nut Square Stack Stack three Threading Avg.

TCD [34] 156.11 107.15 0.77 0.92 0.53 0.44 0.63 0.95 0.62 0.56 0.68
SDP [61] 159.85 112.39 0.82 1.00 0.62 0.54 0.82 0.96 0.80 0.70 0.78
CARP (Ours) 16.08 6.92 0.86 0.98 0.74 0.78 0.90 1.00 0.82 0.70 0.85

Table 4. Multi-Task Simulation Results (Visual Policy). Success rates are averaged across the top three checkpoints for each task, as well
as the overall average across all tasks. We also report parameter count and inference time for generating 400 actions. CARP outperforms
diffusion-based policies by 9%-25% in average performance, with significantly fewer parameters and over 10× faster inference.

are trained using visual inputs.
Metrics. Success rates are reported for each task as the

average of the best three checkpoints. For Nut Assembly,
partial success (e.g., placing one block inside the cylinder)
is assigned a score of 0.5, while full success is scored as
1. For all other tasks, a score of 1 is awarded only when
strict success criteria are fully satisfied. Additionally, we
calculate the average success rate across all tasks. To eval-
uate model efficiency, we report both the parameter scale
calculated by the Pytorch interface and the inference time
required to predict 400 actions on a single A100 GPU.

Implementation Details. For CARP, we extend the
single-task implementation by incorporating a task embed-
ding as an additional condition, alongside the observation
sequence s. We also use a moderately deeper decoder-only
transformer in GPT-2 style. CARP is trained with a batch
size of 512 for 200 epochs on an A100 GPU. Baseline mod-
els follow the same training settings as SDP [61]. This
minimal modification enables CARP to adapt to multi-task
learning seamlessly.

Results. As shown in Tab. 4, CARP achieves up to
a 25% average improvement in success rates compared
to state-of-the-art diffusion-based policies, highlighting its
strong performance. With minimal modification, CARP
seamlessly transitions from single-task to multi-task learn-
ing, further demonstrating its flexibility, a benefit of its
GPT-style architecture. Additionally, as shown in Tab. 4,
CARP achieves over 10× faster inference speed and uses
only 10% of the parameters compared to SDP. Leverag-
ing its GPT-style autoregressive design [7, 47], CARP can
seamlessly adapt to multi-task settings without complex de-
sign modifications [61], demonstrating the flexibility of this
architecture, which strongly supports RQ3. These results
strongly demonstrate CARP’s flexibility, solidifying its role
as a high-performance and high-efficiency approach for vi-
suomotor robotic policies.

4.3. Evaluation on Real-World

In this section, we evaluate our approach, CARP, on real-
world tasks under compute-constrained conditions, compar-
ing its performance and efficiency against baseline methods.

Experimental Setup. To validate CARP’s real-world
applicability, we design two manipulation tasks:

Scene RGB
Camera

Wrist RGB
Camera

Robotiq 
Gripper

UR5e 
Robotic Arm

CA R P
Cup

Bowl

Figure 7. Real-World Setup. The left panel shows the environ-
ment used for the experiment and demonstration collection. The
right panel shows the trajectory from the Cup and Bowl datasets.

1. Cup: The robot must locate a cup on the table, pick it
up, move to the right area of the table, and put it down
steadily (top-right, Fig. 7).

2. Bowl: The robot needs to identify a smaller bowl and
a larger pot on the table, pick up the bowl, and place it
inside the pot (bottom-right, Fig. 7).

We use a UR5e robotic arm with a Robotiq-2f-85 gripper,
equipped with two RGB cameras: one mounted on the wrist
and one in a third-person perspective (left panel, Fig. 7).
The robot is controlled through 6D end-effector position-
ing, with inverse kinematics for joint angle calculation. For
teleoperation, we collected 50 human demonstration trajec-
tories for each task using a 3D Connexion space mouse.

Baselines. As a baseline, we reproduce the CNN-based
image-based diffusion policy [11], adapting the model’s in-
put size to accommodate our observational setup.

Metrics. For each trained policy, we report the average
success rate across 20 trials per task, with the initial posi-
tions randomized. We also measure inference speed on an
NVIDIA GeForce RTX 2060 GPU, reporting action predic-
tion frequency in Hertz.

Implement Details. For both models, the input consists
of current visual observations from the wrist and scene cam-
eras (resolution: 120× 160), as well as proprioceptive data
from the robotic arm. We execute 8 predicted actions out
of a horizon of 16 predictions. We train the diffusion policy
for 3000 epochs with a batch size of 64. For CARP, we use

8



Task Cup Task Bowl

Su
cc
es
sR
at
e
(%
)

In
fe
re
nc
e
Sp
ee
d
(H
z)

Success
Rate

Inference
SpeedCARP (Ours)

Diffusion Policy Task Cup
Task Bowl

Figure 8. Real-World Results (Visual Policy). We report the
average success rate across 20 trials and the inference speed as
action prediction frequency. CARP achieves competitive success
rates with significantly faster inference compared to DP.

the same visual policy structure as in the simulation tasks,
training the action VQVAE for 300 epochs with a batch size
of 256, and the decoder-only transformer for 3000 epochs
with a batch size of 64.

Results. As shown in Fig. 8 and Fig. 9, CARP achieves
comparable or superior performance, with up to a 10% im-
provement in success rate over the diffusion policy across
all real-world tasks, supporting RQ1. Additionally, CARP
achieves approximately 8× faster inference than the base-
line on limited computational resources, demonstrating its
suitability for real-time robotic applications, thus support-
ing RQ2 (see Fig. 15 for further visualization).

Ta
sk

 C
up

Ta
sk

 B
ow

l

Figure 9. Visualization of CAPR on Real-World Tasks. CARP
generates smooth and successful trajectories for the Cup and Bowl
tasks, with temporal progression from left to right.

5. Related Work
5.1. Visual Generation
Advancements in generative models for visual generation
have significantly influenced the robotics community. Au-
toregressive models generate images in a raster-scan fash-
ion using discrete tokens from image tokenizers [14, 14, 20,
60]. GPT-2-style transformers [4, 29, 48, 63] demonstrate

strong performance by generating tokens sequentially. Re-
cent work has scaled these models to billions of parameters,
achieving impressive text-to-image synthesis results [35,
69] and robotic action generation [13, 54]. VAR [58] intro-
duces a new next-scale autoregressive paradigm that shifts
image representation from patches to scales. This frame-
work [58], has been applied across tasks [16, 32, 33, 37, 43,
66, 67]. Studies [56, 58] show that autoregressive models
can surpass diffusion models in achieving state-of-the-art
performance, serving as a key inspiration for our work.

5.2. Visuomotor Policy Learning
Behavior cloning [8] has proven effective, especially in
autonomous driving [41] and manipulation [68], offer-
ing a simpler alternative to complex reinforcement learn-
ing. Explicit policies directly map states or observations
to actions [68], enabling efficient inference. However,
they struggle with complex tasks. Techniques like action
space discretization [65] and Mixture Density Networks
(MDNs) [12, 52] have been proposed, though they face is-
sues with exponential action space growth and hyperparam-
eter sensitivity. Implicit policies, often based on Energy-
Based Models (EBMs) [15, 23], offer flexibility but are
challenging to train due to optimization instabilities. Dif-
fusion models have been applied to robotic policy learn-
ing [2, 11, 50], showing their effectiveness for decision-
making tasks. However, their multi-step denoising pro-
cess is computationally expensive. Recent efforts focus
on improving generalization [62], adapting to 3D environ-
ments [61, 64], and enhancing modularity via Mixture of
Experts (MoE) [61]. Consistency models [36, 55] acceler-
ate inference but often compromise action prediction accu-
racy, along with inflexible model design.

6. Conclusion
In this work, we introduce Coarse-to-Fine Autoregressive
Policy (CARP), a novel paradigm for robotic visuomotor
policy learning that combines the efficiency of autoregres-
sive modeling (AM) with the high performance of diffu-
sion modeling (DM). CARP incorporates: 1) multi-scale
action tokenization to capture global structure and tempo-
ral locality, addressing AM’s limitations in long-term de-
pendency; 2) coarse-to-fine autoregressive prediction that
refines actions from high-level intentions to detailed execu-
tion, achieving DM-like performance with AM-level effi-
ciency through latent space prediction and relaxed Marko-
vian constraints. The comprehensive evaluations, from sim-
ulation to real-world, demonstrate CARP’s effectiveness in
balancing high performance, efficiency, and flexibility.

We hope this work will inspire further exploration into
next-generation policy learning by leveraging GPT-style au-
toregressive models, advancing a more unified perspective
on current generative modeling techniques (see Appx.A).

9



References
[1] Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Cheb-

otar, Omar Cortes, Byron David, Chelsea Finn, Chuyuan Fu,
Keerthana Gopalakrishnan, Karol Hausman, et al. Do as i
can, not as i say: Grounding language in robotic affordances.
arXiv preprint arXiv:2204.01691, 2022. 13

[2] Anurag Ajay, Yilun Du, Abhi Gupta, Joshua Tenenbaum,
Tommi Jaakkola, and Pulkit Agrawal. Is conditional gen-
erative modeling all you need for decision-making? arXiv
preprint arXiv:2211.15657, 2022. 7, 9

[3] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine
Miech, Iain Barr, Yana Hasson, Karel Lenc, Arthur Men-
sch, Katherine Millican, Malcolm Reynolds, et al. Flamingo:
a visual language model for few-shot learning. Advances
in neural information processing systems, 35:23716–23736,
2022. 13

[4] Dosovitskiy Alexey. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint arXiv:
2010.11929, 2020. 9

[5] Mariusz Bojarski. End to end learning for self-driving cars.
arXiv preprint arXiv:1604.07316, 2016. 5

[6] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen
Chebotar, Xi Chen, Krzysztof Choromanski, Tianli Ding,
Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2:
Vision-language-action models transfer web knowledge to
robotic control. arXiv preprint arXiv:2307.15818, 2023. 13

[7] Tom B Brown. Language models are few-shot learners.
arXiv preprint arXiv:2005.14165, 2020. 8, 13

[8] Harish chaandar Ravichandar, Athanasios S. Polydoros, So-
nia Chernova, and Aude Billard. Recent advances in robot
learning from demonstration. Annu. Rev. Control. Robotics
Auton. Syst., 3:297–330, 2020. 9

[9] Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze
Xie, Yue Wu, Zhongdao Wang, James Kwok, Ping Luo,
Huchuan Lu, et al. Pixart-alpha: Fast training of diffusion
transformer for photorealistic text-to-image synthesis. arXiv
preprint arXiv:2310.00426, 2023. 5

[10] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee,
Aditya Grover, Misha Laskin, Pieter Abbeel, Aravind Srini-
vas, and Igor Mordatch. Decision transformer: Reinforce-
ment learning via sequence modeling. Advances in neural
information processing systems, 34:15084–15097, 2021. 13

[11] Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric
Cousineau, Benjamin Burchfiel, and Shuran Song. Diffusion
policy: Visuomotor policy learning via action diffusion. In
Proceedings of Robotics: Science and Systems (RSS), 2023.
1, 2, 3, 5, 6, 8, 9, 13, 14

[12] Zichen Jeff Cui, Yibin Wang, Nur Muhammad Mahi Shafi-
ullah, and Lerrel Pinto. From play to policy: Conditional be-
havior generation from uncurated robot data. arXiv preprint
arXiv:2210.10047, 2022. 1, 9, 13

[13] Pengxiang Ding, Han Zhao, Wenjie Zhang, Wenxuan Song,
Min Zhang, Siteng Huang, Ningxi Yang, and Donglin Wang.
Quar-vla: Vision-language-action model for quadruped
robots. In European Conference on Computer Vision, pages
352–367. Springer, 2025. 9

[14] Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming
transformers for high-resolution image synthesis. In Pro-
ceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 12873–12883, 2021. 9

[15] Pete Florence, Corey Lynch, Andy Zeng, Oscar A Ramirez,
Ayzaan Wahid, Laura Downs, Adrian Wong, Johnny Lee,
Igor Mordatch, and Jonathan Tompson. Implicit behavioral
cloning. In Proceedings of the 5th Conference on Robot
Learning, pages 158–168. PMLR, 2022. 6, 9

[16] Jiatao Gu, Yuyang Wang, Yizhe Zhang, Qihang Zhang,
Dinghuai Zhang, Navdeep Jaitly, Josh Susskind, and
Shuangfei Zhai. Dart: Denoising autoregressive trans-
former for scalable text-to-image generation. arXiv preprint
arXiv:2410.08159, 2024. 3, 5, 9

[17] Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey
Levine, and Karol Hausman. Relay policy learning: Solving
long-horizon tasks via imitation and reinforcement learning.
arXiv preprint arXiv:1910.11956, 2019. 6

[18] David Haynes, Steven Corns, and Ganesh Kumar Venayag-
amoorthy. An exponential moving average algorithm. In
2012 IEEE Congress on Evolutionary Computation, pages
1–8. IEEE, 2012. 5

[19] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models. arXiv preprint arxiv:2006.11239,
2020. 2, 3, 13

[20] Mengqi Huang, Zhendong Mao, Zhuowei Chen, and Yong-
dong Zhang. Towards accurate image coding: Improved au-
toregressive image generation with dynamic vector quantiza-
tion. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 22596–22605,
2023. 9

[21] Michael Janner, Qiyang Li, and Sergey Levine. Offline re-
inforcement learning as one big sequence modeling prob-
lem. Advances in neural information processing systems, 34:
1273–1286, 2021. 13

[22] Michael Janner, Yilun Du, Joshua Tenenbaum, and Sergey
Levine. Planning with diffusion for flexible behavior synthe-
sis. In International Conference on Machine Learning, 2022.
3, 4

[23] Daniel Jarrett, Ioana Bica, and Mihaela van der Schaar.
Strictly batch imitation learning by energy-based distribution
matching. Advances in Neural Information Processing Sys-
tems, 33:7354–7365, 2020. 9

[24] Yunfan Jiang, Agrim Gupta, Zichen Zhang, Guanzhi Wang,
Yongqiang Dou, Yanjun Chen, Li Fei-Fei, Anima Anand-
kumar, Yuke Zhu, and Linxi Fan. Vima: General robot
manipulation with multimodal prompts. arXiv preprint
arXiv:2210.03094, 2(3):6, 2022. 13

[25] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec
Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for
neural language models. arXiv preprint arXiv:2001.08361,
2020. 13

[26] Maciej Kilian, Varun Jampani, and Luke Zettlemoyer.
Computational tradeoffs in image synthesis: Diffusion,
masked-token, and next-token prediction. arXiv preprint
arXiv:2405.13218, 2024. 2, 3

10



[27] Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao,
Ashwin Balakrishna, Suraj Nair, Rafael Rafailov, Ethan
Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An
open-source vision-language-action model. arXiv preprint
arXiv:2406.09246, 2024. 13

[28] Lucy Lai, Ann Zixiang Huang, and Samuel J Gershman. Ac-
tion chunking as policy compression. PsyArXiv, 2022. 13

[29] Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and
Wook-Shin Han. Autoregressive image generation using
residual quantization. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
11523–11532, 2022. 4, 6, 9

[30] Seungjae Lee, Yibin Wang, Haritheja Etukuru, H Jin Kim,
Nur Muhammad Mahi Shafiullah, and Lerrel Pinto. Be-
havior generation with latent actions. arXiv preprint
arXiv:2403.03181, 2024. 1, 13

[31] Xinghang Li, Minghuan Liu, Hanbo Zhang, Cunjun Yu, Jie
Xu, Hongtao Wu, Chilam Cheang, Ya Jing, Weinan Zhang,
Huaping Liu, et al. Vision-language foundation models as
effective robot imitators. arXiv preprint arXiv:2311.01378,
2023. 13

[32] Xiang Li, Hao Chen, Kai Qiu, Jason Kuen, Jiuxiang Gu,
Bhiksha Raj, and Zhe Lin. Imagefolder: Autoregres-
sive image generation with folded tokens. arXiv preprint
arXiv:2410.01756, 2024. 9

[33] Xiang Li, Kai Qiu, Hao Chen, Jason Kuen, Zhe Lin,
Rita Singh, and Bhiksha Raj. Controlvar: Exploring con-
trollable visual autoregressive modeling. arXiv preprint
arXiv:2406.09750, 2024. 9

[34] Zhixuan Liang, Yao Mu, Hengbo Ma, Masayoshi Tomizuka,
Mingyu Ding, and Ping Luo. Skilldiffuser: Interpretable hi-
erarchical planning via skill abstractions in diffusion-based
task execution. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 16467–
16476, 2024. 7, 8

[35] Yang Liu, Pengxiang Ding, Siteng Huang, Min Zhang, Han
Zhao, and Donglin Wang. Pite: Pixel-temporal alignment
for large video-language model. In European Conference on
Computer Vision, pages 160–176. Springer, 2025. 9

[36] Guanxing Lu, Zifeng Gao, Tianxing Chen, Wenxun Dai, Zi-
wei Wang, and Yansong Tang. Manicm: Real-time 3d diffu-
sion policy via consistency model for robotic manipulation.
arXiv preprint arXiv:2406.01586, 2024. 5, 9

[37] Xiaoxiao Ma, Mohan Zhou, Tao Liang, Yalong Bai, Tiejun
Zhao, Huaian Chen, and Yi Jin. Star: Scale-wise text-to-
image generation via auto-regressive representations. arXiv
preprint arXiv:2406.10797, 2024. 9

[38] Ajay Mandlekar, Danfei Xu, Josiah Wong, Soroush Nasiri-
any, Chen Wang, Rohun Kulkarni, Li Fei-Fei, Silvio
Savarese, Yuke Zhu, and Roberto Martı́n-Martı́n. What mat-
ters in learning from offline human demonstrations for robot
manipulation. In arXiv preprint arXiv:2108.03298, 2021. 6,
7

[39] Ajay Mandlekar, Soroush Nasiriany, Bowen Wen, Iretiayo
Akinola, Yashraj Narang, Linxi Fan, Yuke Zhu, and Dieter
Fox. Mimicgen: A data generation system for scalable robot
learning using human demonstrations. In 7th Annual Con-
ference on Robot Learning, 2023. 7

[40] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan
Zhu. Semantic image synthesis with spatially-adaptive nor-
malization. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 2337–2346,
2019. 5

[41] Dean A Pomerleau. Alvinn: An autonomous land vehicle in
a neural network. Advances in neural information processing
systems, 1, 1988. 9

[42] Aaditya Prasad, Kevin Lin, Jimmy Wu, Linqi Zhou, and
Jeannette Bohg. Consistency policy: Accelerated visuo-
motor policies via consistency distillation. arXiv preprint
arXiv:2405.07503, 2024. 6

[43] Kai Qiu, Xiang Li, Hao Chen, Jie Sun, Jinglu Wang, Zhe
Lin, Marios Savvides, and Bhiksha Raj. Efficient autoregres-
sive audio modeling via next-scale prediction. arXiv preprint
arXiv:2408.09027, 2024. 9

[44] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario
Amodei, Ilya Sutskever, et al. Language models are unsu-
pervised multitask learners. OpenAI blog, 1(8):9, 2019. 13

[45] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervi-
sion. In International conference on machine learning, pages
8748–8763. PMLR, 2021. 13

[46] Ilija Radosavovic, Baifeng Shi, Letian Fu, Ken Goldberg,
Trevor Darrell, and Jitendra Malik. Robot learning with sen-
sorimotor pre-training. arXiv:2306.10007, 2023. 2

[47] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee,
Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and
Peter J Liu. Exploring the limits of transfer learning with a
unified text-to-text transformer. Journal of machine learning
research, 21(140):1–67, 2020. 8

[48] Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. Gener-
ating diverse high-fidelity images with vq-vae-2. Advances
in neural information processing systems, 32, 2019. 9

[49] Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez
Colmenarejo, Alexander Novikov, Gabriel Barth-Maron,
Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Sprin-
genberg, et al. A generalist agent. arXiv preprint
arXiv:2205.06175, 2022. 13

[50] Moritz Reuss, Maximilian Li, Xiaogang Jia, and Rudolf Li-
outikov. Goal-conditioned imitation learning using score-
based diffusion policies. arXiv preprint arXiv:2304.02532,
2023. 9

[51] Moritz Reuss, Ömer Erdinç Yağmurlu, Fabian Wenzel, and
Rudolf Lioutikov. Multimodal diffusion transformer: Learn-
ing versatile behavior from multimodal goals. In First Work-
shop on Vision-Language Models for Navigation and Manip-
ulation at ICRA 2024, 2024. 2

[52] Nur Muhammad Mahi Shafiullah, Zichen Jeff Cui, Ariun-
tuya Altanzaya, and Lerrel Pinto. Behavior transformers:
Cloning k modes with one stone. In Thirty-Sixth Conference
on Neural Information Processing Systems, 2022. 1, 2, 5, 6,
9, 13

[53] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy
Davis, Quoc Le, Geoffrey Hinton, and Jeff Dean. Outra-

11



geously large neural networks: The sparsely-gated mixture-
of-experts layer. arXiv preprint arXiv:1701.06538, 2017. 7

[54] Wenxuan Song, Han Zhao, Pengxiang Ding, Can Cui,
Shangke Lyu, Yaning Fan, and Donglin Wang. Germ: A gen-
eralist robotic model with mixture-of-experts for quadruped
robot. arXiv preprint arXiv:2403.13358, 2024. 9

[55] Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya
Sutskever. Consistency models. arXiv preprint
arXiv:2303.01469, 2023. 9

[56] Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue
Peng, Ping Luo, and Zehuan Yuan. Autoregressive model
beats diffusion: Llama for scalable image generation. arXiv
preprint arXiv:2406.06525, 2024. 9

[57] Garrett Thomas, Ching-An Cheng, Ricky Loynd, Fe-
lipe Vieira Frujeri, Vibhav Vineet, Mihai Jalobeanu, and An-
drey Kolobov. Plex: Making the most of the available data
for robotic manipulation pretraining. In Conference on Robot
Learning, pages 2624–2641. PMLR, 2023. 13

[58] Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Li-
wei Wang. Visual autoregressive modeling: Scalable im-
age generation via next-scale prediction. arXiv preprint
arXiv:2404.02905, 2024. 4, 5, 6, 9

[59] Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral
cloning from observation. arXiv preprint arXiv:1805.01954,
2018. 5

[60] Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete
representation learning. Advances in neural information pro-
cessing systems, 30, 2017. 4, 9

[61] Yixiao Wang, Yifei Zhang, Mingxiao Huo, Ran Tian, Xi-
ang Zhang, Yichen Xie, Chenfeng Xu, Pengliang Ji, Wei
Zhan, Mingyu Ding, et al. Sparse diffusion policy: A
sparse, reusable, and flexible policy for robot learning. arXiv
preprint arXiv:2407.01531, 2024. 2, 6, 7, 8, 9

[62] Jingyun Yang, Zi-ang Cao, Congyue Deng, Rika Antonova,
Shuran Song, and Jeannette Bohg. Equibot: Sim (3)-
equivariant diffusion policy for generalizable and data effi-
cient learning. arXiv preprint arXiv:2407.01479, 2024. 9

[63] Jiahui Yu, Xin Li, Jing Yu Koh, Han Zhang, Ruoming Pang,
James Qin, Alexander Ku, Yuanzhong Xu, Jason Baldridge,
and Yonghui Wu. Vector-quantized image modeling with
improved vqgan. arXiv preprint arXiv:2110.04627, 2021. 9

[64] Yanjie Ze, Gu Zhang, Kangning Zhang, Chenyuan Hu,
Muhan Wang, and Huazhe Xu. 3d diffusion policy: General-
izable visuomotor policy learning via simple 3d representa-
tions. In ICRA 2024 Workshop on 3D Visual Representations
for Robot Manipulation, 2024. 5, 9

[65] Andy Zeng, Pete Florence, Jonathan Tompson, Stefan
Welker, Jonathan Chien, Maria Attarian, Travis Armstrong,
Ivan Krasin, Dan Duong, Vikas Sindhwani, et al. Transporter
networks: Rearranging the visual world for robotic manipu-
lation. In Conference on Robot Learning, pages 726–747.
PMLR, 2021. 9

[66] Jinzhi Zhang, Feng Xiong, and Mu Xu. G3pt: Un-
leash the power of autoregressive modeling in 3d genera-
tion via cross-scale querying transformer. arXiv preprint
arXiv:2409.06322, 2024. 9

[67] Qian Zhang, Xiangzi Dai, Ninghua Yang, Xiang An, Ziy-
ong Feng, and Xingyu Ren. Var-clip: Text-to-image gen-
erator with visual auto-regressive modeling. arXiv preprint
arXiv:2408.01181, 2024. 9

[68] Tianhao Zhang, Zoe McCarthy, Owen Jow, Dennis Lee, Xi
Chen, Ken Goldberg, and Pieter Abbeel. Deep imitation
learning for complex manipulation tasks from virtual real-
ity teleoperation. In 2018 IEEE international conference on
robotics and automation (ICRA), pages 5628–5635. IEEE,
2018. 9

[69] Han Zhao, Min Zhang, Wei Zhao, Pengxiang Ding, Siteng
Huang, and Donglin Wang. Cobra: Extending mamba to
multi-modal large language model for efficient inference.
arXiv preprint arXiv:2403.14520, 2024. 9

[70] Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea
Finn. Learning fine-grained bimanual manipulation with
low-cost hardware. arXiv preprint arXiv:2304.13705, 2023.
1, 2, 5, 13

[71] Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang, and Hao
Li. On the continuity of rotation representations in neural
networks. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 5745–5753,
2019. 5

[72] Yuke Zhu, Josiah Wong, Ajay Mandlekar, Roberto Martı́n-
Martı́n, Abhishek Joshi, Soroush Nasiriany, Yifeng Zhu,
and Kevin Lin. robosuite: A modular simulation frame-
work and benchmark for robot learning. In arXiv preprint
arXiv:2009.12293, 2020. 7

12



Supplementary Material

A. Limitations and Future Work

In this work, we propose CARP, a next-generation paradigm
for robotic visuomotor policy learning, which effectively
balances the long-standing trade-off between high perfor-
mance and high efficiency seen in previous autoregressive
modeling (AM) and diffusion modeling (DM) approaches.
Despite these advancements, there remain several limita-
tions and opportunities for improvement in future research.

First, the model structure of CARP can be further opti-
mized for simplicity. Currently, CARP employs a two-stage
design, where the first stage utilizes separate multi-scale ac-
tion VQVAE modules for each action dimension to address
their orthogonality. Future work could focus on developing
a unified one-stage method that integrates multi-scale tok-
enization with the coarse-to-fine prediction process, result-
ing in a more efficient and streamlined framework without
compromising performance.

Second, the multimodal capabilities of CARP remain
underdeveloped. To mitigate the unimodality issue inher-
ent in traditional autoregressive policies trained with MSE
loss, CARP adopts a cross-entropy loss, which retains the
potential for multimodality. Compared to the Diffusion Pol-
icy’s multimodal ability [11] likely coming from DDPM’s
integration over a Stochastic Differential Equation [19],
CARP’s approach is relatively straightforward. Further en-
hancements are needed to fully realize and leverage its mul-
timodal potential.

Third, CARP’s adoption of the GPT-style paradigm
opens up promising yet unexplored possibilities. Be-
yond the flexibility already demonstrated, the contextual
understanding capabilities inherent in GPT-style architec-
tures [44] suggest that CARP could be extended to support
multimodal inputs [3, 45] like tactile and auditory informa-
tion and address robotic tasks requiring long-term depen-
dency reasoning [1]. Additionally, its potential for gener-
alization in few-shot and zero-shot learning scenarios [7]
represents a particularly valuable direction for future explo-
ration.

Finally, but not exhaustively, the scaling properties of
CARP represent a promising frontier. The scaling laws es-
tablished in existing GPT-style models [25] could be seam-
lessly applied to CARP, suggesting that increasing network
capacity and leveraging larger pre-training datasets could
lead to substantial performance gains. Furthermore, recent
advances in Vision-Language-Action (VLA) [6, 27, 31]
models present an opportunity to integrate CARP into such
frameworks, which could further validate its scalability and
capabilities.

Obs
Encoder

View/Proprio. State

…

𝒓"!

𝑞"!

𝒓""

𝑞"! 𝑞""

𝒓"#$!

𝑞"! 𝑞"" … 𝑞"#$!

Transformer

𝒓"#

𝒆" 𝒆% 𝒆#

𝑞"! 𝑞"" … 𝑞"#$! 𝑞"#

𝒔 ……

…𝒓"! 𝑞"! 𝒓"" 𝑞"! 𝑞"" 𝒓"% 𝑞"! 𝑞"" 𝑞"%

Token Embedding

Figure 10. Coarse-to-Fine Autoregressive Inference. During
inference, we leverage kv-caching to enable coarse-to-fine pre-
diction without the need for causal masks. The full set of token
maps, r1:K , is collectively decoded by the action VQVAE into ex-
ecutable actions for the robotic arm.

𝑎"! 𝑎""𝑠!

𝑎"! 𝑎""

Transformer

𝑠"𝑎"# 𝑠# 𝑎"$

𝑎"$

… …

Figure 11. Conventional Autoregressive Policy. In reinforce-
ment learning, conventional autoregressive policies generate ac-
tion tokens sequentially, where each token is predicted based on
the previously generated tokens. This differs from the action
chunking prediction shown in Fig. 2a.

B. Definition of Autoregressive Policy
Autoregressive policies naturally capitalize on the effi-
ciency and flexibility of autoregressive models. Initial
works from a reinforcement learning perspective applied
models like Transformers to predict the next action using
states or rewards as inputs [10, 21], as shown in Fig. 11 and
formalized as:

p (at,at+1, ...,at+H−1) =

t+H−1∏
k=t

p (ak|ak−H:k−1, sk−H:k) ,

(8)
where sk−H:k−1 represents the states or observations cor-
responding to the previous actions ak−H:k−1, and sk is the
current state or observation. Following this paradigm, sev-
eral subsequent works [24, 49, 57] employ autoregressive
models to predict one action at a time during inference.

More recently, the concept of action chunking [28], de-
rived from neuroscience, has demonstrated notable benefits
for imitation learning [12, 30, 52, 70]. In action chunk-
ing, individual actions are grouped and executed as cohe-
sive units, leading to improved efficiency in storage and

13



execution, as depicted in Fig. 2a. This paradigm extends
the capabilities of GPT-style decoders by modifying them
to generate chunks of actions in one forward pass, replac-
ing the traditional single-step autoregressive operation with
a multi-token, pseudo-autoregressive process. The action
generation process for this paradigm is described as:

p (at,at+1, . . . ,at+H−1) =

t+H−1∏
k=t

p (ak|sO) , (9)

where O is the historical horizon. The model predicts the
entire action sequence in one forward pass without strictly
adhering to step-by-step autoregressive operations.

Given the significant performance improvements en-
abled by action chunking, we adopt this multi-token, one-
forward-pass framework throughout the article and experi-
ments when referring to autoregressive policies (AP).

C. Implementation Consistent with Diffusion
Policy

We adopt similar experimental settings with 1 or 2 observa-
tions, a prediction horizon of 16, and an executable action
length of 8, following the standard setup used in Diffusion
Policy [11].

It is important to note that our classical formulation
introduces a minor discrepancy in the horizon definition
compared to the implementation of Diffusion Policy [11].
Specifically, in our formulation, the horizon H encom-
passes the past observed steps, meaning that the index of
the current next predicted action is O, rather than 0. In con-
trast, as outlined in formulation Eq. (1), the horizon H does
not include past observations, with the first prediction step
corresponding to the next time step. While the rationale be-
hind this design remains unclear due to limitations in the
author’s understanding, we retain the horizon definition in-
troduced by Diffusion Policy [11] to ensure consistency in
our experimental comparisons.

14



Lift

Can

Square

Figure 12. Visualization of Tasks in Single-Task Experiment.

Coffee

Hammer
Cleanup

Mug
Cleanup

Nut
Assembly

Square

Stack

Stack
Three

Threading

Figure 13. Visualization of Tasks in Multi-Task Experiment.

15



Task 1

Task 2

Task 3

Task 4

Task 5

Task 6

Task 7

Figure 14. Visualization of All Interaction Tasks in Kitchen Experiment.

Cup

Bowl

Figure 15. Visualization of Tasks in Real-World Setup.

16


	Introduction
	Background
	Problem Formulation
	Autoregressive Policy
	Diffusion Policy

	Method
	Multi-Scale Action Tokenization
	Coarse-to-Fine Autoregressive Prediction
	Implementation Details

	Experiment
	Evaluation on Simulation Benchmark
	Evaluation on Multi-Task Benchmark
	Evaluation on Real-World

	Related Work
	Visual Generation
	Visuomotor Policy Learning

	Conclusion
	Supplementary Materials
	Limitations and Future Work
	Definition of Autoregressive Policy
	Implementation Consistent with Diffusion Policy

